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As the complete aquations for plastic flow vith arbitrarily large 

deformations are not readily available, the results of a number of scattered, 

relevant analyses have been assembled in the following pages to provide a 

summary of the appropriate equations. For simplification, tensor notation 

is used everywhere. 

THE CONSERVATIOK LAWS 

The equations of motion for a fluid are given below for a general 

tensor law of resistance: 

I + P Ui,i = 0' ntinuity,    (l) 

Du. 
 i 
Dt a. . ., momentum. (2) 

p il ^E + i uiui) = ^if^a1     ^^ 
where the convective derivative is given by the expression 

st      at    c.   ui  0^7 

(3) 

and repeated indices are summed. Differentiation with respect to a 

coordinate, x^ is denoted by preceding the index with a comma, e.g., 

äx. {        }.i- 

The energy equation is simplified by elimination of the kinetic 

energy term ir Eq. (3) by means of the momentum equation, resulting In 

DE 
P KT = a, , u Dt m 

The velocity gradient, u. ,, can be written as the sum of a 

symmetric and an antisynunetrie par+. The symmetric part, e , is the 

strain-rate tensor and the antisymmetric part, UJ , is the angular 

velocity vector in tensor form. 



Thus, 

where, by definition; 

i,J   10   ij' K7i 

eij = SJiJ    ^ - "#Jt (6) 

The stress tensor is always s^Tnmetric, a result found by computing the 

total moment on an element of fluid and noting that the surface forces 

mus-L cancel. Then, 

aiJ = aJi* CT) 

Interchanging dummy indices, using Eqs. (5) and (6), and noting that an 

expression equal to its negatj.ve is zero, 

•aiJ ^J ^ aJi ^ji = ^.^ ^ij - 0- 

The energy equaiion (k)  then becomes 

The stress and strain tensors can be written as the sum of a 

hydrostatic part aiid a deviator part, defined as the total tensor less 

the hydrostatic part. The total tensors have been denoted above by 

Greek letters; the deviators will be denoted by Roman letters. Then the 

stress tensor becomes 

where 

cli  = ^ 5iJ + SiJ' (9) 

P - - I ^   sli = 0, (10) 

and 6ij is the K1'0116^61' delta. Similarly, the strain rate tensor becomes 

1 

where 

eij = 5e 5ij + eij ' Cn) 

6 Si eii'      eii = 0- i&) 
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Using these relations,  the five flow equations can be written in 

terms  of the deviator quantities: 

M    + PB  -0, Dt (13) 

Du. 

Dt 

DE 
p ^r- + pfl  = S. .  e 

(iM 

(15) 

THE CONSTITUTIVE EQUATI0K3 

A wide variety of material properties can be described by a 

cons   Ltutive equation which expresses the total strain rate as the SUK 

of an elastic and a plastic part: 

-l m 

bSiJ     ' ij 2^ "ij 

(total) (elastic) (p.lastic) 

0-6) 

where M is the shear mcdulus  of elasticity; b is,   in general, a function 

of stress and strain.    Several special cases  in which the second stress 
invariant 

J2=SiJSiJ (17) 

appears repeatedly are listed below.    Where k appears,  it denotes the 

yield strength of the material. 

Classical viscosity 

Shear modulus  * ji » *j b - l/2 pr, p = dynamic viscosity; (l8) 

Prandtl-Reuss plasticity equations 

b - eij si.A' 

b - 0 

for J    = k , 

for Jp < k ; 
(19) 



k 

Perznya plasticity equatinr^ 

fc 

b = 0 

ClasGical elasticity 

b - 0; 

Rigid-plastic equations 

|i = <=, vith Eq. (19) or Eq. (20) 

for J * k , 

for J2 < k ; 

(20) 

(21) 

(22) 

MATERIAL BOTATIQH 

The general constitutive equation, (l6), is only valid for 

coordinates fixed in the material. If it is to be used in connection 

with a set of Eulerian flow equations, for which the coordinate axes are 

fixed in space, a correction for rotation of the material must be 

included. The physical basis for this correction term is that when the 

material rotates there is a change in the components of the stress tensor, 

even though the physical state of stress may not chance. Let T. denote 

the components of any tensor in material axes and T  the components in 

fixed axes. Tnen 

T. . = T  a., a., 
ij   ki ik jl 

T. . = T  a, . a,. 
ij   kX ki Ij 

(23) 

(24) 

and the direction cosines, which are  time-dependent,  satisfy the  identities 

(25) 

(26) 

Equation (l6)    ecomes,   in this notation, 

S..  = s-    S . .   + b S . . . (27) 

a. . a., = 5., , 
ij     ik        jk' 

a ..  a, . = 6 ., . 
ji    ki        jk 



It  is required to replace the first term on the right with appropriate 

fixed-axis derivatives.    Differentiating Eq.  (24) 

% = \i aki axj + Tia Si *ij + Tki aki % 

and multiplying by a  .  a  ., 
Pi   qj 

fiJ api Vl " ^pq + V \i apl + Tpi ^J V (28) 

The quantities -»^ a.      are the components of the singular velocity 

tensor, »^, To see this, we maxe use of the angular velocity vector, 

Q, about which the material axes are rotating. Let a, denote the unit 
I 

vector along the j,  axis in the rotating material. The angular velocity 

of the endpoint of this vector is in vector notation 

a = n* a. 
I 

or in tensor notation 

"ri = erjk ÜJ aU> (29) 

where 

1 I I form an even   I 
Cijk =     i'1) acccrding as  i,  j,  k     ^form an odd     i    permutation    ^ 

0 I (do not form a | 

Multiplying Eq.   (29) by a      and using Eq.   (26), 

*r* aU = er ji QJ • 

The angular velocity vector, Q ,  is related to the angular velocity tensor 

by 

Combining these two equations and changing indices, 

*r/ aU " "*ri (32) 

and Eq.   (28)  becomes 

T. .  a  ,  a   .  = T      + T,     ux     + T      m     . (ll) 
y    Pi    q.]        pq        kq ^Tq)        pi ^q' ^i; 



6 

Multiplying Eq.  (27) by a   .a   ., eliminating the barred quantities by 

means of Eq.  (33)., and putting the deviator stress tensor, S.,,  for tre 

general tensor,  T.., we  get,  finally. 

The term on the right of the energy equation,  (15),  can be 

obtained by multiplying Eq.   {^h) by S   .  and using the expression for 

J^  in Eq.   (l?).    'fhe  terms  involving OK.  disappear by syns ^try 

considerations,  as  outlined in the equations below: 

S.     u)  , S^  = - S.     to,    S. .  = - S. .  u)   . S.     =0. ir    rj     ij ir    jr    U ij    rj     ir 

The Lagrangian time derivative in Eq. (3%) should be replaced by the 

convective derivative in the Eulerian formulation; the energy equation, 

in its final form, then becomes 

DE        1 ^2 ,     . 
p Dt + p9 = irM-  DT 

+ b J2- (35) 

The first term on the right is the rate of increase of distortional strain 

energy and the second term is the work done by the plastic strains. The 

strain energy is recoverable, but the work done by plastic strains is not. 

THE COMPLETE EQUATIONS 

For convenience, the equations for plastic flow are assembled below 

and include the equation of state, which has not been introduced before. 

Continuity Equation 

^ + p 9 = 0, (36) 

Momentum Equation 

Dt 

Du. 

Prn^  " P.i   +Si;   ^ (37) 

Energy Equation 

Dt    -      M      ~ij,j' 

L-L _ 1     ^2 
P D^ + P 8 = eij ^.r HT   DT + b J2> (38) 



Equation of State 

P = F (E,p). 

Constitutive Equations 

where 

Sii = 0' 

DS 

^ 4 \i \i 4 sik % 

(39) 

+ b siö' m 
{hi) 

b = e4 . 3../^ 

b = 0 

Defining Equations 

for J    = k , 

for J    < k  . 
(^2) 

'ij 

Si 
ij 

e 

2 (ui,J  + UJ,i)  - 

i (ui,j - u^i) 

I 9 5-. 3        ij 

S. . Sit/ 

u.   . 

(deviator strain rate), 

(rotation rate),     (kk) 

THE PLASTIC-RIGID EQUATIONS 

This situation is considerably simplified if the plastic-rigid 

assumption is introduced, which is, in effect, to neglect the elastic 

regime.    Then the constitutive equation,   (40), becomes 

e. .  = b S^, 
ij ij 

and Eq.  {k2)  is  simply 

P       1 1/2 
b =-- e.. S../r = i (e, . e..)       . 

ij    IJ' k ^  ij    ij7 

(^7) 

m) 
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Differentiating Eq. (Uy), put+ing ^ s fl (denoting a viscositylike term), 

and leaking some straightforward ma-nipulation.. 

The equations are similar to the Navier-Stokes equations, but the 

"viscosity," fl, is not a constant, as in the usual viscous flo«. 

Summarizing these results, we have for plastic-rigid flow six equations 

in the six unknowns, p, u ; p, and E. The last three equations for the 

variables fT, e , and o are not essential and are not counted in the 
* J 

SU" 

^ + p 9  = 0, (50) 

0 

Dt 

^i .-,.2 1 

where 

Dt    --P^MV     U1+fSji)  -Se.. fT^, (51) 

p ~ + P 9  = k2/2f - k   spTPTl ' (52) 

P = F (E,p), (53) 

eij = i (ui,t1 
+ uj,i) -I95ij' (55) 

9 - ui}i, (56) 

CYLINDRICAL COORDINATES 

The equations for axially symmetric flows are given below, u and 

w denote the radial and axial velocity components, r and z denote 

coordinates in the radial and axial directions. Dots denote ordinary 

time derivatives and subscripts denote differentiation with respect to 



the indicated coordinate. 

p + upr + wpz + p6 = 0, 

p ^. + uur + wu2) = -pr + P (urr + - ur + u22 + i *v) 

p (w * uv    + wv )  ■ -p    + Ji (u      +iw+v      +^9) 
r z z rr      r    r        zz      3    2 

+ ge-, S + e„0 W , 

• ^^___,  
p (E + uEr + wEz)  + pe - k /eJJTT: , 

eU = Ur " I ' 
e31 = e13 = I {UZ + Wr) " I ' 

e  = v -i 
33   z  3 ' 

9 = u + — + w , 
r  r   z ' 

e,. e.. - u2 + i (u + v )2 + v2 + (H)2 . a2 J lO ij   r  2 ^ z   r7    z  ^r'   3 * 

SPHERICALLY SYMMETRIC FLOWS 

In the case of spherically s:mmietric i'lows, the equations are the 

following, in which u denotes radial velocity änd r denotes distance 

from the origin. 

p + upr + pe = 0 , 

2 u r p (Ü + uur) = -pi. + W (urr + —=■ ) + 2e11 W    , 
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p (E + u Er) + p B - k./l" I \ -| I i 

•n " Ur - 9/3 '    ^ Ur + 2 7 ' 

k 

^ =/i lu .üi • 
r  r 
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